表一

建设项目名称	麦格纳动力总成(江	工西)有限公司汽 变更项目(一		l造辅助 [·]	设施扩建
建设单位名称	麦格:	纳动力总成(江南	西)有限公	司	
建设项目性质	技改	改扩建√ 技改			
建设地点	南昌绍	经济技术开发区梅	球大街 169	9号	,
主要产品名称		二期污水处理站	处理能力		NEW Y
设计能力		处理能力为 2	280t/d		ALL YES
实际能力		处理能力为 2	280t/d	J. T.	K,
建设项目环评 时间	2020年05月	开工建设时间	201	9年05	月
调试时间	2019年12月	验收现场监测 时间	2021年0	2月24	日~25 日
环评报告表 审批部门	南昌经济技术开发 区城市管理和环境 保护局	环评报告表《 编制单位》		环境技/ 限公司	术咨询有
环保设施设计 单位	广州市环境保护工 程设计院有限公司	环保设施施工		环境保护 院有限2	中工程设 公司
投资总概算	900 万元	新保投资 总概算	228 万元	比例	25.3%
实际总投资	580.8 万元	实际环保投 资总概算	580.8 万 元	比例	100%
验收监测依据	(1)《中华人民共 (2)《中华人民共 修订版); (3)《中华人民共 施); (4)《中华人民共 29日修订版); (5)《中华人民共 月 29日修订版); (6)《建设项目环	、和国固体废物污 境保护管理条例	》(2015 年 治法》(20 法》(2018 染防治法》 5染环境防	1月1日 18年10 年8月 (2019 治法》(2	月 26 日 1 日起实 年 12 月 2020 年 4
	令(2017)第 682 号)	;			

(7)《建设项目竣工环境保护验收暂行办法》国环规环评[2017]4号(2017年11月20日);

二 建设项目竣工环境保护验收技术规范

- (1) 《建设项目竣工环境保护验收技术指南 污染影响类》;
- (2) 《大气监测检验方法》:
- (3) 《地表水和污水监测技术规范》;
- (4) 《工业企业厂界噪声标准测量方法》;
- (5) 《环境噪声监测技术规范》;

三 建设项目环境影响报告表及审批部门审批决定

- (1) 《格特拉克(江西)传动系统有限公司汽车变速箱制造辅助设施扩建变更项目环境影响报告表》(江西融大环境技术咨询有限公司编制,2020年05月);
- (2) 南昌经济技术开发区城市管理和环境保护局《关于格特拉克(江西)传动系统有限公司汽车变速箱制造辅助设施扩建变更项目环境影响报告表的报复》(洪经城环审字[2020]30号),2020年06月04日:
- (3)《格特拉克(江西)传动系统有限公司年产 15 万台 MSB、JC530 系列支速器项目环境影响报告表》(南昌市环境保护研究设计区域限公司,2013 年 03 月);
- 《格特拉克(江西)传动系统有限公司试验中心二期项目 竣工环境保护验收监测报告表》自主验收意见。

四 其他相关文件

- (1)国家环境保护总局《排污口规范化整治技术要求(试行)》(环监[1996]470号)
- (2) 麦格纳动力总成(江西)有限公司提供的其它有关技术资料。

模模模划方法的

验收监测评价标准

根据南昌经济技术开发区城市管理和环境保护局文件洪经城环审字[2020]30号《关于格特拉克(江西)传动系统有限公司汽车变速箱制造辅助设施扩建变更项目环境影响报告表的批复》,确定本项目验收监测执行标准:项目运营期,污水处理站外排废水中 CODcr、BOD5、SS、NH3-N、总磷执行白水湖污水处理厂纳管标准,石油类、动植物油、LAS、锌参照执行《污水等产排放标准》(GB8978-1996)一级标准要求;项目污水处产站废气执行《恶臭污染物排放标准》(GB14554-93); 南、西、北厂界噪声执行《工业企业厂界环境、声排放标准》(GB12348-2008)中3类标准。

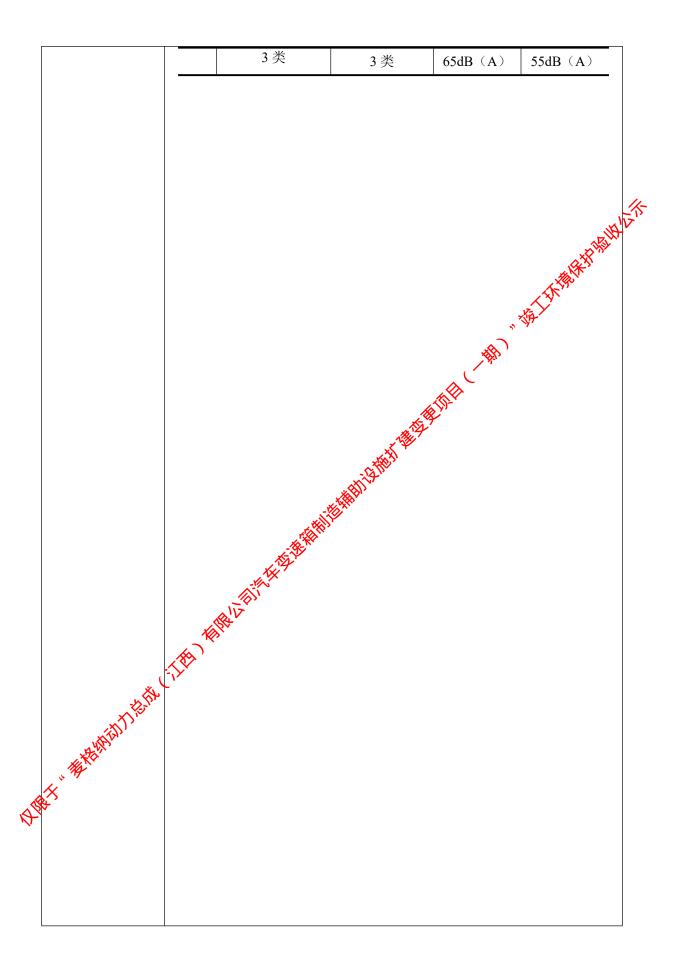

具体情况见下表:

表 1-1 污染物排放标准一览表

验收监测评价 标准、标号、级 别、限值

	项目	排放标准	隹	及精制	标准值		
				染物 名称	最高允许排放	浓度(mg/L)	
				pH 值(无量纲)	6-9		
			SE TOWN	化学需氧量	4(00	
		白水湖污水		五日生化需氧量	25	50	
水污染物	AIV		悬浮物	25	50		
	St.		氨氮	3	0		
Χ	THE PARTY OF THE P			总磷	4	1	
٧.		《污水综合排放标 准》		石油类	5		
				动植物油	10		
		(GB8978-1 一级标准§		LAS	5		
_		9文4小1年3	文小	锌	2	.0	
		《恶臭污染		污染因子	最高允许排放 浓度(mg/m³)	最高允许排放 速率(kg/h)	
	大气 污染	物排放标 准》	无组	氨	1.5	/	
	物	(GB14554- 93)	织	硫化氢	0.06	/	
	93)			臭气浓度	20(无量纲)	/	
	噪声	(GB12348-2	2008)	类别	昼间	夜间	

3

工程建设内容:

项目建设工程简述

麦格纳动力总成(江西)有限公司汽车变速箱制造辅助设施扩建变更项目位于南昌经济技术开发区梅林大街 169 号。中心位置地理坐标为 E115°52'44.45", N28°45'47.5615"。

麦格纳动力总成(江西)有限公司(原名为"格特拉克(江西)传动系统有 限公司")于2008年在江西省南昌市经济技术开发区梅林大街169吴建设生产 厂区,并后续扩建了二期工程、仓库、实验大楼、技术大楼、食堂、员工倒班宿 舍等建设内容,且均办理了相关环评、验收环保手续。2019年麦格纳动力总成 (江西)有限公司(原名为"格特拉克(江西)传动系统有限公司")投资900 了赣江新区生态环境局的批复(赣新环评字【2009】24号),后由于技术原因, 400m² 固体废物暂存站进行合理分区改造,同时新建 400m²一般固废暂存间;(2) 新建一座 280m³/d 非磷化废水处理站,扩建完成后全厂非磷化废水处理规模提升 至 402m³/d。处理工艺与现有非磷化废水处理站一致,对现有未经生化处理就排 入白水湖污水处理厂的仓库管理人员生活污水、技术大楼、食堂、员工倒班宿舍 废水进行收集处理。 长格纳动力总成 (江西)有限公司 (原名为"格特拉克(江 西)传动系统有限公司")依照相关法律法规委托江西融大环境技术咨询有限公 司编制完成了《格特拉克(江西)传动系统有限公司汽车变速箱制造辅助设施扩 建变更项目环境影响报告表》, 2020年06月04日, 南昌经济技术开发区城市 管整和环境保护局以洪经城环审字[2020]30 号文批复了该项目的环境影响评价 文件。项目于 2019 年 05 月开始进行建设,2019 年 12 月建成竣工,属于扩建项 目,公司已申领排污许可证。

2021年01月01日南昌市行政审批局批准了格特拉克(江西)传动系统有限公司更名为麦格纳动力总成(江西)有限公司(见附件三)。

项目根据建设改造进度采用分期验收,本次验收内容是麦格纳动力总成(江西)有限公司汽车变速箱制造辅助设施扩建变更项目(一期)及其配套设施,具

体内容:新建一座 280m³/d 非磷化废水处理站,扩建完成后全厂非磷化废水处理规模提升至 402m³/d。处理工艺与现有非磷化废水处理站一致,对现有未经生化处理就排入白水湖污水处理厂的仓库管理人员生活污水、技术大楼、食堂、员工倒班宿舍废水进行收集处理。环评内容中对现有固体废物暂存站进行改造的工程未建设,故项目对现有固体废物暂存站改造内容不纳入本次验收范围。

本次验收内容主要包括核查实际工程建设内容变更情况、工程实际环境影响、环境影响报告表及其批复文件所提出的环境保护措施和建议的落实情况。

类环保设施与措施的效果等。

根据《中华人民共和国环境保护法》和国务院第 682 号令《建设项目环境保护管理条例》的有关要求,按照环境保护设施与主体工程同时设计、同时施工、同时投产使用的"三同时"制度要求,麦格纳动力总成(江西)有限公司(原名为"格特拉克(江西)传动系统有限公司")于 2020 年 12 月 1 日委托江西南大融汇环境技术有限公司承担了项目竣工环保验收工作,江西南大融汇环境技术有限公司接受委托后,于 2020 年 12 月 16 日派教技术人员对该项目环境保护设施运行情况及环境管理情况进行了全面检查,并收集了工程的有关技术资料,于 2020 年 12 月 17 日编制验收监测方案,并委托江西贯通检测有限公司于 2021 年 02 月 24 日~02 月 25 日进行现场预测,2021 年 03 月 03 日出具的验收监测报告。结合江西贯通检测有限公司,其的验收监测报告及建设方提供的有关资料,在此基础上编制完成了《麦格纳动力总成(江西)有限公司汽车变速箱制造辅助设施扩建变更项目(一类)竣工环境保护验收监测报告表》。

项目环保持续情况

麦格纳动力总成(江西)有限公司(原名为"格特拉克(江西)传动系统有限公孙))各项目均办理了相关环评、验收环保手续。

表 2-1 各项目环保手续一览表

序 号	项目名称	审批单位 及时间	环评审批情况	验收情况	现状
1	格特拉克(江西)传动 系统有限公司南昌工 厂厂区搬迁项目	江西省环 保厅, 2008.12.29	审批文号: 赣 环督字 [2008]620 号	江西省环保厅,验收 文号: 赣环评函 [2013]142号 (2013.8.22)	投产 中
2	格特拉克 (江西) 传动 系统有限公司年产 15	南昌市环 保局,	审批文号: 洪 环审批	验收:自主验收,验收	投产 中

	万台 MSB、JC530 系列	2013.3.6	[2013]62 号	时间为 2018 年 8 月	
	变速器项目				
	格特拉克 (江西) 传动	南昌市环	审批文号:洪	验收:自主验收,验	投产
3	系统有限公司南昌工	保局,	环审批	收	中
	厂仓库建设项目	2013.5.8	[2013]111 号	时间为 2018 年 9 月	'
	 格特拉克 (江西) 传动		审批文号:登		
4	系统有限公司试验中	/	记表备案,备	/	投产
4	一	/	案时间为 2018	/	中
	初坝日		年8月		14
	格特拉克(江西)传动	南昌市环	审批文号:洪	自主验收,验收	+J. William
5	系统有限公司试验中	保局,	环审批	日主級权, 級权 时间为 2018 年 1 月 <i> </i>	
	心二期项目	2017.1.12	[2017]13 号	門門外2016年1月	XXV T
			审批文号:登	×/ā	
6	格特拉克(江西)传动	,	记表备案,备	, ,	投产
0	系统新技术大楼项目	/	案时间为 2015		中
			年8月		
	 格特拉克(江西)传动		审批文号:登		
7	系统有限公司南昌新	,	记表备案,备	(*)	投产
/		/	案时间为 201	/	中
	区食堂扩建项目		年7.8		
	格特拉克(江西)传动		审批文告:登		
8	系统有限公司南昌工	/	记念备案,备	/	投产
0		/ _*	好间为 2018	/	中
	/ 别连内关也件项目	-42-7	年9月		
	格特拉克(江西)传动	1. T.	审批文号:登		
9	系统有限公司宿舍一	-4/X	记表备案,备	,	投产
9		(2)	案时间为 2017	/	中
	号楼项目	Y	年2月		
	格特拉克(江西)传动	赣江新区			
10	系统有限公司汽车变	^{颗红刺}	赣新环评字	 	作废
10	速箱制造辅助设施扩	生心小児 	[2019]24 号	/L	变更
	建项目	/PJ			

项单建设情况

★ 项目名称: 麦格纳动力总成(江西)有限公司汽车变速箱制造辅助设施扩建变更项目(一期)

建设单位: 麦格纳动力总成(江西)有限公司

建设性质: 改扩建

建设地点:南昌经济技术开发区梅林大街 169 号,中心位置地理坐标为 E115°52'44.45",N28°45'47.5615"。项目地理位置图详见附图 1。

工程建设内容:项目建设性质为扩建变更性质,具体变更内容为:①对现有

400m²的固体废物暂存站进行分区改造,同时新建一座 400m²的一般固废暂存间;②新建一座处理能力为 280m³/d 的非磷化废水处理站。本次主要建设内容为环保工程中项目新建一座非磷化废水处理站,厂区内现有主体工程、辅助工程、储运工程、公用工程等均不涉及。由于对现有固体废物暂存站进行改造的工程未建设,故项目对现有固体废物暂存站改造内容不纳入本次验收范围。

本项目劳动人员依托现有员工,不新增。工作制度与现有工作制度一致,年 生产 330 天,每天工作 12 小时。

建设项目经济技术指标一览表见表 2-2,建设主要设备见表 2-3,主义原材料年用量情况一览表见表 2-4,环保投资一览表见表 2-5。

表 2-2 建设项目经济技术指标一览表

		<u> </u>	又次百年扩展不相称 见很 📉	
序号	工程性质	工程组成	环评情况	实际情况
1	主体工程	无	本项目不涉及主体工程大改造	与环评一致
2	辅助工程	无	本项目不涉及主体工程技术改造	与环评一致
		供配电系 统	依托现有,由市政(各(不含备用发	与环评一致
3	 	供水系统 供热系统	本项目不改改供水、供热系统技术改造	与环评一致
3	A/11-15	排水系统	污水处理设施扩容改造完成后依托 死有排水管道进入白水湖污水处理	与环评一致
			厂,处理后排入赣江北支 新建一座280m³/d非磷化废水处理站	与环评一致
		废水处理	废水收集管网,依托现有	与环评一致
4	 环保工程 <mark>。 </mark>	噪声工程	隔声、吸声、减震、吸收等措施	与环评一致
		,	对现有的 400m² 固体废物暂存站进	未进行建设,
	×. C12	固废工程	行合理分区改造,同时新建 400m²	不在本次验
	75.17		一般固废暂存间	收范围内

表 2-3 主要设备一览表

家 等	设备名称	型号	数量(环评设计)	实际情况
× 79	潜污泵	35m ³ /h	5 台	8台
2	曝气机	/	3 台	4 台
3	管道接头等	/	若干	若干
4	控制房、配电间	/	1(依托现有)	1(依托现有)

表 2-4 主要原材料年用量情况一览表

序号	名称	数量 (环评设计)	实际情况
1	氢氧化钠	5t/a	8t/a
2	聚丙烯酰胺	3t/a	0.27t/a
3	氯化钙	0	15t/a

4		聚合氯化铝		0	10t/	a	
	表 2-5 环保投资一览表						
序号	项目	投资内容		环评设计环保 投资(万)	实际环保投 资(万)	备注	
1	废水	新建 280m³/d 非磷化 处理站	上废水	200	570	新建	
2	噪声	隔声、吸声等措施	施	3	3.8	新建	
3	废气	定期喷洒除臭剂、加强	虽绿化	5	2	新建	
4	固废	委托有资质单位处	置	/	5	新建、	
5	总计		·	208	580.8		

主要环境保护目标

本项目位于南昌经济技术开发区梅林大街169号。中心位置地理坐标为E115°52'44.45",N28°45'47.5615"。据实地调查,项目周边主要环境保护目标及相对位置见表2-6,项目周边环境分布图见附图3。

表 2-6 周围环境敏感点分布情况表

		- 0 /· 4 pag· 1 ·	20 45 VIEW VIII 72 10	1100-04	
环境 要素	保护目标名称	相对厂址方 位	相对距离m	规模(人)	环境功能
	北山新村	东	65	人群/3500	
	吉都居.海棠苑	东南	122	人群/3500	
	鸡山村新区	东南-泰	410	人群/2000	
	港口新村		460	人群/2000	
大气	港口新村二区	心 说	1000	人群/2000	GB3095-2012
环境	双港新村	南	880	人群/2000	中二级标准
, , , ,	白水湖学校	南	500	人群/300	
	江西水利 袋 业 学院	西南	750	人群/6000	
	秀城	西南	930	人群/2000	
	东交通大学	西南	1065	人群/23000	
声环	Br.	项目周边区域 2	 00m 范围内		GB3096-2008
獨		·····································	OOIII 46 101 11		中 3 类标准
水环		东南	1100	大河	GB3838-2002
境		小用	1100	八円	中III类标准

项目变动情况

表 2-7 项目实际建设情况与原始环评情况表

判断依据	环评及批复内容	实际建设内容	变动 情况 及原 因	重大 变动 判断
------	---------	--------	---------------------	----------------

	I	I	l	1	_	1
性质	1.建设项目开发,使用 功能发生变化	扩建变更,新建 280t/d 非磷化污水站	扩建变更,新建 280t/d 非磷化污 水站	无变 化	无变 化	
规模	2.生产大30%以上的 3.生产大30%以上储的 3.生产大,物的 3.生产大,物的 4.位的或相的有第加 5.位的或相的有象的,一个人,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,是一个人,	新建 280t/d 非磷化污水站,全厂非磷化废水处理站处理能力从现有的 122t/d 提升为 402t/d	新建 280t/d 非磷化污水站,全厂非磷化废水处理站处理能力从现有的 122t/d 提入为 402t/d	北北	无化	The state of the s
地点	5.重新选址;在原厂址 附件调整(包括总平面 布置图变化)导致环境 防护距离范围变化且 新增敏感点的	南省经济技术开发区 高级经济技术开发区 高级格林大街 169 号	南昌经济技术开 发区梅林大街 169号	无变 化	无变 化	
★ 产工艺	6.新增产品品种或生产工艺(含主要发光、主要发光、主要发光、主要原始对料、杂节、杂节、杂节、杂节、杂节、杂节、杂节、杂节、杂节、杂节、杂节、杂节、杂节、	新建 280t/d 非磷化污水 站工艺处理采用物化 +MBR 生化的工艺,主 要原辅料为氢氧化钠、 聚丙烯酰胺	新建 280t/d 非磷化污水用生化生物工艺化的工艺,氧化的工艺,有效的工艺,有效的人类,有效的人类,不可以不同,不可以不可以不可以不可以不可以不可以不可以不可以不可以不可以不可以不可以不可以不	新氯钙合化不增类染其污物放也会 10增化聚氯铝新一污物他染排量不新增%	不于大动	

	7.物料运输、装卸、贮存方式发生变化,导致 大气污染物无组织排放量增加10%以上的					
环	8.废水、废气污染验院 完化,导致一次染验的 完全变形,导致一次,导致一次,导致一次,导致一次,导致一次,导致一次,导致一次,导力,但是不是,是是一个,是是一个,是是一个,是是一个,是是一个,是是一个,是是一个,是	废水	本本水化成库污食舍处可理经废非站理压,处厂员大倒收水全分磷。自水水进行,是大倒收水全分磷。有时,从水上,大型区生楼班上,从上,大型区,是一个大型,是一个大工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工	本水磷建内生大工进全得全自废期理处多水处项产化成仓活楼倒行厂到厂建水非站建标湖理无,水,管水食宿集水全水期理处磷处后水指无,水,管水食宿集水全水期理处磷处后水排。增期理厂人技、废理可理别磷、水废达入理赣增期理厂人技、废理可理别磷、水废达入理赣废非站区员术员水,以。经处一处水接白厂赣	无变	无变化
小境保护措施	为有组织排放的除外),主要排气筒排放高度降低 10%及以上的。11.噪声、土壤或地下水污染防治措施变化,导致不利环境影响加重的。12.固体废物利用处置方式由委托外单位利用处置改为自行利用	No.	本项 发气主要 为产建污水处理 为产生污水处理, 的无组织恶臭,采 用加强厂区绿化, 同时定期在污水 处理站喷洒除臭 剂等措施减少对 周边环境的影响。	本项目废气主要 为新建污水产生 站运营期恶臭, 站还组强厂鬼, 采用加强下宽, 化,同时理站喷减 化,利力的理站, 除臭剂。 少对周边响。	无变 化	无变 化
	处置的。百行利用处置 设施事独开展环境影	噪声	减震、隔声、 绿化	减震、隔声、绿 化	无变 化	无变 化
%	度外价的除外),固体 废物自行处置方式变 化,导致不利影响加重 的。 13.事故废水暂存能力	固废	一般固废:主要为 新建二期非磷化 废水处理站运行 过程中新增生化 污泥量。	一般固废:主要 为新建二期非磷 化废水处理站运 行过程中新增生 化污泥量。	无变 化	无变 化
	或拦截设施变化,导致 环境风险防范能力弱 化或降低的		危险废物:本项目 无新增危险废物。	危险废物:本项 目无新增危险废 物。	无变 化	 无变 化
		环境风险	严格落实《报告 表》中提出的各项 环境风险防控措 施。企业应建立、 健全环境风险应	企业已根据各项 环境风险建立了 相关环保管理制 度及环境突发事 件应急预案,并	无变 化	无变 化

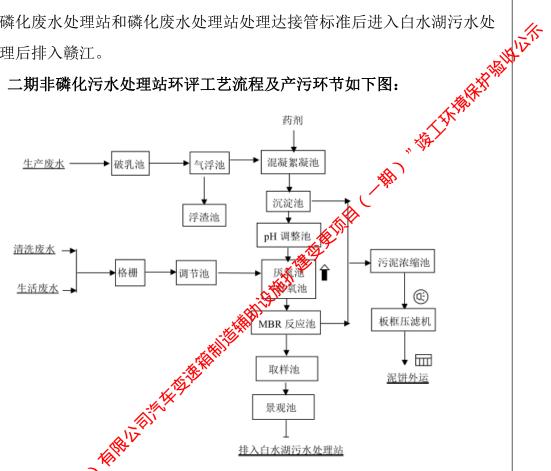
	急事故应急措施,	定期组织风险防	
	对管理、行车人员	范教育和业务技	
	应进行风险防范	术培训。	
	的教育和业务技		
	术培训。		

根据《中华人民共和国环境影响评价法》、《建设项目环境保护管理条例》、《关于印发污染影响类建设项目重大变动清单(试行)的通知》(环办环评函 [2020]688 号)、《江西省环境保护厅《建设项目(污染型)重大变动判定原则(试行)》,建设项目的性质、规模、地点、生产工艺和环境保护措施五个因为中的一项或一项以上发生重大变动,且可能导致环境影响发生显著变化(特别是不利环境影响加重)的,界定为重大变动。属于重大变动的应当重新移批环境影响评价文件,不属于重大变动的外入竣工环境保护验收管理。

经过现场调查与建设单位提供资料,实际建设情况与环评内容基本一致,仅原辅料新增氯化钙、聚合氯化铝,氯化钙、聚合氯化铝、新增一类污染物,其他污染物排放量也不会新增 10%,不存在重大变动。

水平衡:

项目厂区内磷化废水进入现有磷化水水处理站(20t/d)处理,本项目建成后,全厂非磷化废水处理站处理能力。122t/d 提升为 402t/d,全厂现有经化粪池简单处理排放的 280t/d 生活污水产部纳入厂区二期非磷化废水处理站处理后达标排放。根据业主提供资料水本项目全厂水平衡图见图 2-1。

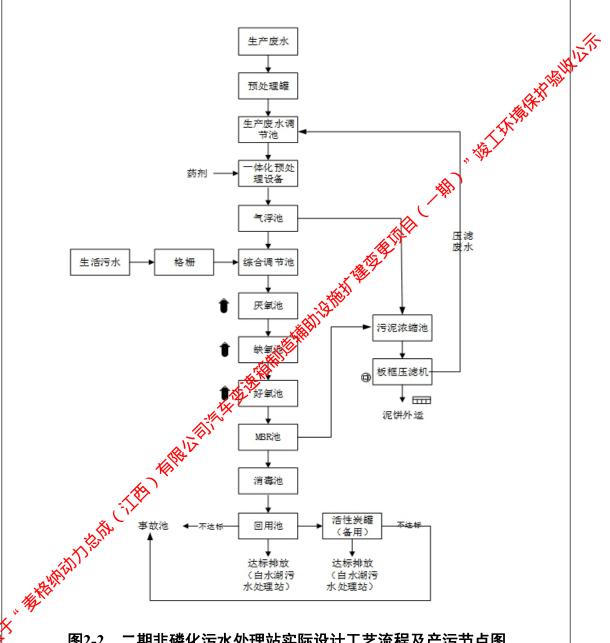


主要工艺流程及产污环节

营运期

项目全厂共建有3座污水处理站,分别为一期非磷化污水处理站、二期非磷 化污水处理站和磷化污水处理站,全厂废水分别经自建一期非磷化废水处理站、 二期非磷化废水处理站和磷化废水处理站处理达接管标准后进入白水湖污水处 理厂处理后排入赣江。

1、二期非磷化污水处理站环评工艺流程及产污环节如下图:


乙期非磷化污水处理站环评设计工艺流程及产污节点图 工艺说明:

物化处理工艺流程: 厂区内现有生产废水经过破乳、絮凝工序预处理,同时 加药系统联动。废水中的悬浮物、浮油等污染物被吸附分离,和废水中部分重力 大的颗粒杂质一并在沉淀池中通过重力自然沉淀。沉淀池出水经过气浮工序处理 后进入后续生化处理工序。

生化处理工艺流程:经预处理后生产废水和清洗废水、厂区内生活污水一并 进入生化系统厌氧段, 在厌氧微生物的作用下进行厌氧生化反应, 去除部分污染 物的负荷,将长分子链和环状有机物分解为短分子链结构,提高污水的可生化性, 然后废水自流入 MBR 生物反应池,通过风机曝气充氧,高浓度的活性污泥中的

微生物进行代谢,降低水中的污染物含量,部分污水回流到厌氧反应池反硝化脱 氮,通过中空膜的分离作用,抽吸泵将清水吸出并加压输送到取样监测池,经过 监测水处理达标后自流到景观水池,达标排放。

2、二期非磷化污水处理站实际工艺流程及产污环节如下图:

图2-2 二期非磷化污水处理站实际设计工艺流程及产污节点图 工艺说明:

物化处理工艺流程: 厂区内现有生产废水(清洗废水)经过油水分离工序预处理后进入生产废水调节池,调节废水的水质水量,同时加药系统一体化预处理设备联动。废水中的悬浮物、浮油等污染物被吸附分离,和废水中部分重力大的颗粒杂质一并在沉淀池中通过重力自然沉淀,出水经过气浮工序处理后进入后续

生化处理工序。

生化处理工艺流程:经预处理后生产废水和经机械格栅处理后的生活污水进入综合调节池。综合调节池设置于地面下,周围设计廊道可观察水池渗漏情况,四周设池体渗漏水收集槽,用于收集渗漏或者溢出的废水。经除油处理的生产废水与生活污水在综合调节池混合后,泵送至厌氧池,进一步降低出水中的污染物。厌氧池中废水中的大分子难降解有机物被转化成易于降解的小分子物质(如有机酸等),出水进入缺氧池,在兼性微生物的作用下COD进一步降低,废水的发生化性提高。随后,缺氧池出水进入好氧池,通过好氧微生物降解废水中的有机污染物。好氧池出水进入MBR池,通过MBR池后废水中有机物、SS基本步降低,达到生活杂用水水质标准要求。MBR池出水后进入消毒池,通过ClO2消毒后排入回用水池,处理达标的污水回用于生产和生活。若水质处理不达标则排至事故应急池,再由泵抽至生产废水调节池重新进行处理。

废水处理过程中产生的污泥经污泥泵输送至污泥浓缩池,通过板框压滤机的 脱水作用压榨成干污泥饼,外运交由有资质的 废处理公司处理。浓缩池上清液 和板框机滤液自流至生产废水调节池。

产污环节分析:

(1) 废水

本项目无新增废水产生。二期非磷化废水处理站建成后,对厂区内仓库管理人员生活污水、技术大量、食堂、员工倒班宿舍废水进行收集处理,全厂废水均可以得到完全处理。主要废水为清洗废水(清洗废水为清洗机清洗零件废水,主要污染因子为产油类)和生活污水。

(2) 废气

松项目废气主要为新建污水处理站运营期间产生的无组织恶臭。

(3) 噪声

本项目营运期噪声主要来源于污水处理运营设备运行时产生的设备噪声。

(4) 固废

本项目营运期固体废物主要为新建二期非磷化废水处理站运行过程中新增生化污泥量和废油。

表三

项目主要污染源、污染物处理和排放

1、废水

本项目无新增废水产生。

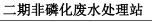

废水情况一览表见表3-1。

表 3-1 废水情况一览表

 废水类		主要污染物种			SENT TO THE PERSON NAMED IN COLUMN T
別	来源	类	环评批复治理设施	实际治理设施	排放去向
生产废水、生活污水	生产 机 活 法 活 活	pH值、化学需 氧量、五日生 化需氧量、悬 浮物、氨氮、 磷酸盐、LAS、 动植物油、锌	二理区生楼班集均理经废非戏戏进理的人术工行废金,得厂一路的人的人们,是是外人的人们,是是外人的人们,是是一个人们的人们,是是一个人们的人们,是是一个人们的人们,是是一个人们的人们,是一个人们的人们,是一个人们的人们,是一个人们的人们,是一个人们的人们,是一个人们的人们,是一个人们的人们,是一个人们的人们,是一个人们的人们的人们,是一个人们的人们,是一个人们的人们的人们,是一个人们的人们的人们,是一个人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人	本产废,管水、水、水、水、水、水、水、水、水、水、水、水、水、水、水、水、水、水、水、	排入市管 网,进 污水 色水 水 上 水 水 上 水 沙 水 沙 进 河 水 处 理 一 。

废水处理设施照片:

废水排放口标识牌

2、废气

本项目废气主要为新建污水处理站运营期间产生的无组织恶臭,采用加强厂

区绿化,同时定期在污水处理站喷洒除臭剂等措施减少对周边环境的影响。 废气情况一览表见表3-2。

表 3-2 废气情况一览表

ľ	废气 名称	│ 来源 │		环评批复治理设施	实际治理设施
•	生产 废气	污水处 理站	NH ₃ -N、H ₂ S、 臭气浓度	加强厂区绿化	加强厂区绿化,同时定期在污水处理站喷洒除臭剂

废气处理设施照片:

绿化带

3、噪声

本项目噪声来源为污水处理运营设备运行时产生的设备噪声。 噪声情况一点表见 3-3。

表 3-3 噪声情况一览表

	类别	※ 来源	环评批复治理设施	实际治理设施
	W. K.	,		项目选用了低噪声的
	WAY.		选用低噪声的机械设备,并合理布置高	机械设备,并合理布置
×	噪声	污水处理运营	噪声设备,同时对产生噪声的设备采取	设备,对产生噪声的设
	ペピ	设备	减震、隔声、距离衰减等措施,加强厂	备采取了隔声、距离衰
			区绿化,降低噪声对周边环境的影响。	减等措施,减少噪声对
				周边环境的影响。

项目噪声处理设施照片如下图:

厂房隔声

4、固体废物

本项目营运期固体废物主要为新建二期非磷化废水处理站运行过程中新增 生化污泥量和废油,暂存于危险废物暂存间,定期发由有资质单位处置。

固废处理设施照片:

规范化排污口

项目按照国家环保部要求规范了排污口建设,并设置了各类排污口标识。 具体如下:

表四

(一)建设项目环境影响报告表主要结论及审批部门审批决定:

1、项目概况

格特拉克(江西)传动系统有限公司于 2008 年在江西省南昌市经济技术开发区梅林大街 169 号建设生产厂区,并后续扩建了二期工程、仓库、实验大楼、技术大楼、食堂、员工倒班宿舍等建设内容。2019 年格特拉克(江西)传动系统有限公司投资 900 万人民币拟对污水处理站及固废仓库进行改造升级,并于2019 年 5 月 20 日取得了赣江新区生态环境局的批复(赣新环评字【2019】24 号)。由于技术原因,建设单位拟对原环评批复的建设内容进行以产变更:

- (1)对现有的 400m² 固体废物暂存站进行合理分区改造 向时新建 400m² 一般固废暂存间。
- (2)新建一座 280m³/d 非磷化废水处理站,处理工艺与现有非磷化废水处理站一致,对现有未经生化处理就排入白水湖污水处理厂的仓库管理人员生活污水、实验大楼、技术大楼、食堂、员工倒班检告废水进行收集处理。

2、平面布置合理性分析

本项目为汽车变速箱(零配件。产产的配套辅助工程,且是属于污染防治设施建设项目,扩建用地均为厂区内未利用地。全厂分为生产区和办公区,其中生产区位于东面,办公区位于西面,全厂生产区与生活区分区设置,总体平面布置合理。

3、产业政策相符性及选址合理性分析

①产业政策相符性

本项门为汽车制造业,属于《产业结构调整指导目录(2019 年本)鼓励类 第1次项"汽车"第1条"汽车关键零部件",本项目建设内容为汽车变速箱(零配件)生产的配套辅助工程,符合国家相关产业政策。

②建设项目选址合理性

本项目位于南昌经济开发区,用地性质为工业用地,本次建设内容为汽车变速箱(零配件)生产的配套辅助工程,且是属于污染防治设施建设项目,对于污染物削减会带来正效益,与周边环境相容性较好。项目选址可行。

4、环境质量现状

环境空气质量满足《环境空气质量标准》(GB3095-2012)二级标准,地表水环境质量满足《地表水质量标准》(GB3838-2002)III类标准,声环境质量满足《声环境质量标准》(GB3096-2008)3类标准。

5、环境影响分析结论

(1) 废水

本项目无新增废水产生,非磷化废水处理站建成后,全厂废水均可以得到完全处理,全厂废水量与现有工程相比无增加,废水中 COD、SS、BOD、氨氮的得到进一步削减,其中 COD 削减量为 21.067t/a,SS 削减量为 7.854t/a,及 的 削减量为 10.506t/a,氨氮削减量为 2.297t/a,经处理达接管标准后进入方水湖污水处理厂处理后排入赣江。根据现场调查,项目附近赣江评价区域内水质的现状质量良好,满足所执行的《地表水环境质量标准》(GB3838-2002)Ⅲ类水质要求,因此本项目的建设不会使赣江水体功能发生明显的变化。

(2) 废气

项目废气主要为新建污水处理站运营期间。生的无组织 NH₃和 H₂S,主要在污水处理站及厂区周围进行植被绿化等措施,控制 NH₃、H₂S 和臭气浓度对厂区周围环境空气的影响,使其满足《恶意污染物排放标准》(GB14554-93)有关限值。项目污水处理站 100m 卫生的护距离范围内均属于格特拉克(江西)传动系统有限公司厂区范围,未提出项目厂界。

因此,本项目废气不会对周围大气环境产生明显的不利影响。

(3) 噪声

本项目设备噪声经减振、吸声及距离衰减后满足《工业企业厂界环境噪声排放标准》、第B12348-2008)中 3 类标准标准,对周围声环境影响较小。

(本) 固体废物

采取以上措施后,本项目所产生的固体废物均可得到妥善处理,处理率为 100%,对周围环境影响较小。

(5) 地下水和土壤

本项目要求建设单位应在日常运营中加强对于污水处理站池体、输送管道等

区域的监管,同时注意对生产工序工作场所地面防腐防渗要求。

6、总量控制结论

项目建成后全厂 COD、氨氮排放量分别为 2.919t/a 和 0.018t/a。可以满足项目原有工程批复中要求的 COD 考核量 17.72t/a,控制量 2.67t/a,氨氮考核量 1.12t/a,控制量 0.355t/a。

二、审批部门审批决定

(一) 项目建设内容及批复意见

1、项目建设内容。项目位于南昌经济技术开发区梅林大街 169 号(特技 克现有厂区内),地理位置坐标为北纬 28°45'47.56",东经 115°52'44.45",占 地面积约 1419m²。

2019 年格特拉克(江西)传动系统有限公司拟对厂区内污水处理站和固废仓库进行升级改造,并取得赣江新区生态环境局的批选(赣新环评字[2019]24号),具体批复建设内容为:①对现有固体废物暂。站进行扩建,扩建后固体废物暂存站从现有的 400m² 扩至 1000m²,其中或0m² 为危险废物暂存站;②对现有非磷化废水处理站进行扩建(新增一数50m³ 调节池和一个 80m³MBR 反应池),对现有未经生化处理就排入自然湖污水处理厂的仓库管理人员生活污水、实验大楼、技术大楼、食堂、员工创班宿舍废水进行收集处理,其余废水处理工艺和规模均不变,扩建完成了全厂非磷化废水处理规模提升至 350m³/d。由于技术原因,建设单位拟对成水评批复的建设内容进行变更,故本项目为扩建变更性质,具体变更内容为。①对现有 400m² 的固体废物暂存站进行分区改造,同时新建一座 400m² 的一般固废暂存间;②新建一座处理能力为 280m³/d 的非磷化废水处理站。

要建设内容包括:建设单位厂区内现有主体工程、辅助工程、储运工程、公用工程等均不涉及;环保工程中项目新建一座非磷化废水处理站、对现有固废暂存进行分区改造、新建一座一般固废暂存站。

项目主要生产设备包括: 5 台潜污泵(35m³/h)、3 台曝气机、管道接头等若干。

2、项目批复意见。项目已取得南昌经济技术开发区经济贸易发展局项目备案通知书。你公司应认真落实《报告表》提出的各项污染防治措施和风险防范措

施,缓解和控制环境不利影响。我局原则同意《报告表》中所列工程性质、规模、地点和环境保护对策措施。

(二)项目建设的污染防治措施及要求

项目在工程设计、建设过程中须落实《报告表》的要求,并重点做好以下工作:

- **1、提高项目清洁生产水平。**项目必须采用先进的生产工艺、技术和设备,提高自动化控制水平,积极推行清洁生产,提高项目清洁生产水平。
- 2、环境风险防范。严格落实《报告表》中提出的各项环境风险防控危施。 企业应建立、健全环境风险应急事故应急措施,对管理、行车人员应此行风险防 范的教育和业务技术培训。本项目可能发生风险的类型主要是污水处理设施发生 故障管道破裂,导致废水泄漏,污染地下水环境;电路超负荷运行。意外雷击以 及员工用火意外造成的次生灾害,进而影响地表水环境,大气环境。建设单位采 取以下风险应急防范措施:①项目污水管线施工时。做好相应的防措施;②设置 专人负责管线的日常养护和管理,定期检查管造损坏情况,并及时安排维修;③ 严格按照消防部门要求设立禁火警示标志。并配备灭火器、灭火机、消防沙桶、 消防栓、手抬泵等消防设施;④项目。 置消防管理人员负责电路及消防设施检 修和维护的管理,防止各种事故的发生;⑤在日常生产过程中,工作人员应及时 提醒员工注意用火的安全。定期开展应急演练,使工作人员熟悉并掌握各类事故 发生后应该采取的正确。法及应急措施,以便将事故造成的损失降至最低;⑥规 范生产管理制度。
- 3、落实废水污染防治措施。项目实施雨污分流的排水体制,雨水直接排入 市政雨水管网;生活污水和非磷化生产废水进入非磷化废水处理站处理,磷化废 水进入磷化废水处理站处理,处理后达到白水湖污水处理厂接管标准,接入市政 污水管网至白水湖污水处理厂处理。
- 4、落实废气污染防治措施。新建非磷化废水处理站产生的无组织恶臭污染物通过建设单位在污水站周边种植树木、加强厂区绿化,同时定期在污水站喷洒除臭剂等措施,加强废水处理站各处理系统管理;硫化氢、氨气、臭气浓度的厂界浓度执行《恶臭污染物排放标准》(GB14554-93)中二级新扩改建标准要求。
 - **5、落实环境噪声污染防治。**项目应选用低噪声设备,并采取减振、隔振等

措施; 厂界噪声达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类区标准要求。

- 6、落实固体废物分类处置和综合利用措施。项目营运期固体废物主要是污水处理站运行过程中产生的污泥,经收集后由建设单位统一处理。此外,项目固废存库扩容之后,建设单位对危险废物收集、贮存、运输、利用、处置各环节均采取针对性防治管理措施。一般固废暂存库按《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)(2013 年修订)要求建设。
- **7、污染物排放总量控制要求。**项目主要污染物排放量应满足相关部分下达的总量控制指标要求。
- **8、防护距离要求。**据报告表测算,项目以废水处理站场界为边界设置 100m 卫生防护距离。在本项目所设卫生防护距离范围内,不得新建学校、医院、住宅 等环境敏感建筑。
- **9、施工期环境保护。**严格落实《报告表》中提出的各项施工期环境保护措施。

(三)项目营运和竣工验收的环保要数

项目建设必须严格执行"配套的政境保护设施与主体工程同时设计、同时施工、同时投入使用"的环境保护之同时"制度,落实各项环境保护措施。项目竣工后,须按照规定程序实施竣工环境保护验收。

(四) 其他环保要或以

- 1、项目变更环保要求。本批复仅限《报告表》所涉内容,若项目建设性质、规模、地点、生产工艺、环保措施发生重大变动,应重新报批环境影响评价文件; 批复后超过,年方开工建设的,应报我局重新审核。
- 2011常环境监督管理要求。南昌市生态环境保护综合执法局、南昌市昌北 生态环境局将负责该项目"三同时"监督检查和日常监督管理工作。你单位应按 规定接受各级环境保护行政主管部门的监督检查。

环评及批复要求落实情况

根据现场勘查,项目环评及批复要求落实具体情况见下表:

表 4-1 环评及批复要求落实情况一览表

排放

项目实施雨污分流的排水体制,雨水直接 排入市政雨水管网;生活污水和非磷化生 产废水进入非磷化废水处理站处理,磷化 废水进入磷化废水处理站处理,处理后达 到白水湖污水处理厂接管标准,接入市政 污水管网至白水湖污水处理厂处理。	本项目无新增废水产生,二期非磷化废水处理站建成后,对厂区内仓库管理人员生活污水、技术大楼、食堂、员工倒班宿舍废水进行收集处理,全厂废水均可以得到完全处理。全厂废水分别经自建一期非磷化废水处理站、二期非磷化废水处理站和磷化废水处理站处理达接管标准后进入白水湖污水处理厂处理后排入赣江。
本项目废气主要为新建污水处理站运营期间产生的无组织恶臭,采用加强厂区绿化,同时定期在污水处理站喷洒除臭剂等措施减少对周边环境的影响。	本项目废气主要为新建污水处理站 营期间产生的无组织恶臭,采用加强 区绿化,同时定期在污水处理的
项目应选用低噪声设备,并采取减振、隔振等措施; 厂界噪声达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类区标准要求。	本项目营运期噪声主要来源于污水处理运营设备运行时产生的设备噪声。项目选用了低噪声的机械设备,并合理布置设备,对产生噪声的设备采取了隔声、距离衰减等措施,减少噪声对周边环境的影响。
项目营运期固体废物主要是污水处理站运行过程中产生的污泥,经收集后由建设单位统一处理。	本項 营运期固体废物主要为新建二
严格落实《报告表》中提出的各项、境风险防控措施。企业应建立、健全、境风险应急事故应急措施,对管理、行车人员应进行风险防范的教育和业务技术培训。	企业已根据各项环境风险建立了相关 环保管理制度及环境突发事件应急预 案,并定期组织风险防范教育和业务技 术培训。
据报告表测算,项目以废水处理站场界为 边界设置 100m 卫家防护距离。在本项目 所设卫生防护距离范围内,不得新建学 校、医院、家宅等环境敏感建筑。	根据资料及现场踏勘,以废水处理站场界为边界设置 100m 卫生防护距离内无新建学校、医院、住宅等环境敏感建筑。
项目全厂GOD 考核量 17.72t/a, 控制量 2.67t/x 氨氮考核量 1.12t/a, 控制量 0.35 wa。	根据计算,项目全厂 COD、氨氮满足 环评考核量要求。
	排入市政雨水管网;生活污水和非磷化生产废水进入非磷化废水处理站处理,磷化废水处理站处理,处理后达到白水湖污水处理厂接管标准,接入市政污水管网至白水湖污水处理厂处理。 本项目废气主要为新建污水处理站运营期间产生的无组织恶臭,采用加强厂区绿化,同时定期在污水处理站喷酒除臭剂等措施减少对周边环境的影响。 项目应选用低噪声设备,并采取减振、隔振等措施;厂界噪声达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类区标准要求。 项目营运期固体废物主要是污水处理站运产过程中产生的污泥,经收集后由建设单位统一处理。 严格落实《报告表》中提出的各项境风险应急事故应急措施。企业应建立、健全产境风险应急,对管理,并至人员应进行风险防范的教育和业务技术培训。据报告表测算,项目以废水处理站场界为边界设置100m 卫务防护距离。在本项目所设卫生防护距离范围内,不得新建学校、医院、金笔等环境敏感建筑。项目全厂GOD考核量17.72t/a,控制量2.67t/公氨氮考核量1.12t/a,控制量

表五

验收监测质量保证及质量控制

一、检测分析方法及检测仪器

检测方法及主要仪器设备具体见下表

表 5-1 检测方法及主要仪器设备一览表

表 5-1 位测方法及主要仪 检测 类别 检测方法				
			仪器名称/型号/编号	检出限分
	pH 值	水质 pH 值的测定玻璃电极	pH 计/FE28-Standard/	L. STRUM
	pri 🖪	法,GB/T 6920-1986	YQ023	
	化学需氧	水质 化学需氧量的测定 重	/ **	4mg/L
	量	铬酸盐法,HJ 828-2017	, A)	HIIg/L
	生化需氧	水质五日生化需氧量(BOD5)	生化培养箱	
	量	的测定稀释与接种法,HJ	SPX-150BSH-II/	0.5mg/L
		505-2009	XXX 144	
	悬浮物	水质悬浮物的测定重量法,	交 芬之一天平	4mg/L
	124.1 LVZV	GB/T11901-1989	Cp214/YQ013	HIIg/L
	氨氮	水质氨氮的测定纳氏试剂分	。可见分光光度计/T6	0.025mg/L
废水	ダリダリ	光光度法,HJ 535-200%	新悦/YQ148	0.025mg/L
//X/10	总磷	水质 总磷的测定 钼酸铵分		0.05mg/L
	7CN 1994	光光度法,GB/T 12693-1989		0.03mg/L
	石油类	水质石油类和水植物油类的	 红外分光测油仪	0.06mg/L
	」 动植物油	测定 红外光光度法,HJ	/JC-0IL-6/YQ037	0.06mg/L 0.05 mg/L
	·// [E // [E	6 37-2018	700 012 0/1 0057	
	LAS 定	水质阴离子表面活性剂的测	 紫外可见分光光度计	
		定证甲蓝分光光度法,GB/T	/UV1800/YQ005	
		7494-1987		
		水质 铜、锌、铅、镉的测定 原	 原子吸收分光光度计	
	-75	子吸收分光光度法,GB/T	/AA-6880/YQ004	0.05mg/L
	³³ /2),	7475-1987		
AW	y '	空气质量 恶臭的测定 三点	- - 无臭气体制备系统	10(无量
MAN	臭气浓度	比较式臭袋法,GB/T	/YQ208	纲)
环境		14675-1993		7147
空气		环境空气和废气 氨的测定		_
与废	氨	纳氏试剂分光光度法,HJ		0.01mg/m ³
气		533-2009	可见分光光度计/T6	
,		居住区大气中硫化氢卫生检	新悦/YQ148	
	硫化氢	验标准方法 亚甲蓝分光光度		0.005mg/m ³
-H 1 1		法,GB/T11742-1989	1.7-22	
噪声与	厂界环境	工业企业厂界环境噪声排放	声级计	/
振动	噪声	标准,GB 12348-2008	/AWA6228+/YQ179	

质量保证及质量控制

- 1、人员:承担监测任务的监测公司通过资质认定,监测人员均持证上岗。
- 2、设备:监测过程中使用的仪器设备符合国家有关标准和技术要求。《中华人民共和国强制检定的工作计量器具明细目录》里的仪器设备,经计量检定合格并在有效期内使用;不属于《中华人民共和国强制检定的工作计量器具明细目录》里的仪器设备,校准合格并在有效期内使用。
- 3、监测时的工况调查:监测在企业生产设备处于正常运行状态下进行,检查工况,

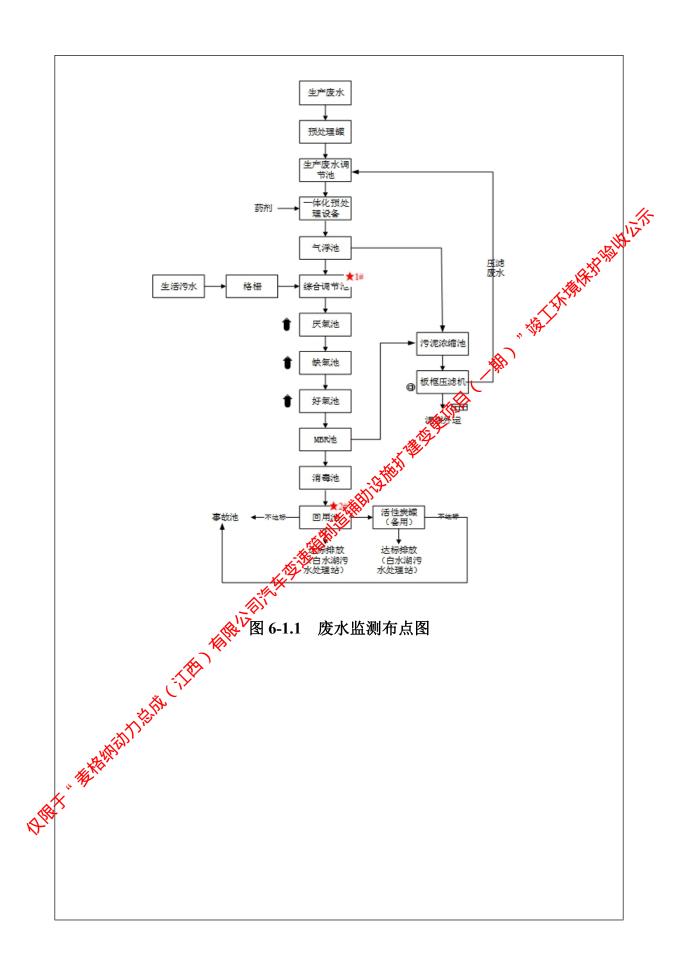
在建设项目竣工环境保护环境现状技术规范要求负荷下监测。

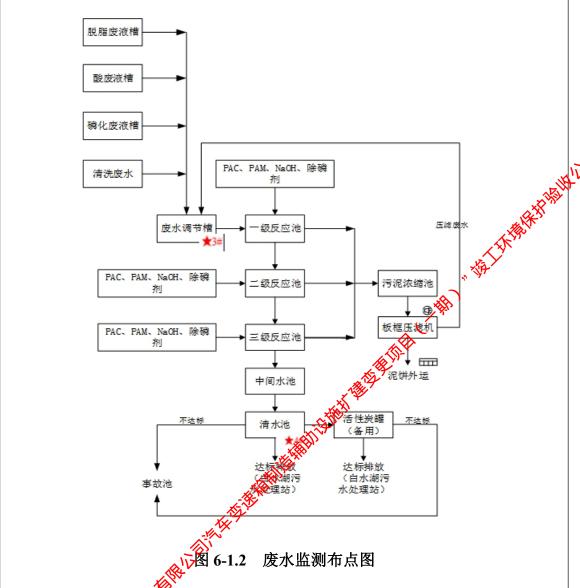
- 4、采样:采样点位选取考虑到合适性和代表性,采样严格按技术规范要求进行,实验室分析过程加测10%的平行双样。噪声采样记录反映监测时的风速,监测时加带风罩,监测前用标准声源对仪器进行校准。校准结果未超过±0.5dB(A),在规范要求范围之内。
- 5、样品的保存及运输:现场测定的项目(***)在现场测定;不能现场测定的,加保存剂保存并在保存期内测定;水质监测项目按规范运输。
- 6、实验室分析:实验室温度为。C,实验室用水为超纯水,使用试剂为正规厂家生产,器皿及仪器完成检验、校准。
 - 7、采样记录、分析结果、监测方案及报告严格执行审核制度。

调析證實行

表六

验收监测内容


6.1 废水监测内容


本项目无新增废水产生,二期非磷化废水处理站建成后,对厂区内仓库管理 人员生活污水、技术大楼、食堂、员工倒班宿舍废水进行收集处理,生产废水经 单独预处理后再与生活污水混合处理。全厂废水均可以得到完全处理。全厂废水 分别经自建一期非磷化废水处理站、二期非磷化废水处理站和磷化废水处理站处 理达接管标准后进入白水湖污水处理厂处理后排入赣江。

本次验收期间,因厂区内磷化废水处理站处理工艺发生了变化,由原来的"气浮+水解酸化+好氧生化"工艺变为"物化+絮凝沉淀",故本次验收监测在二期污水处理站综合调节池、取样池、磷化废水处理站处理或取样口、取样池、厂区总排口分别设置了监测点位,具体见表 6-1。废水监测布点图见图 6-1。

表 6-1 废水监测内容及频次

测点 编号	监测点位	监测目的	监测因子	监测频次
★ 1#	二期污水处理站综 合调节池取样口 二期污水处理站处	考核污水	pH 值、化学需氧量、五日生化 需氧量、悬浮物、氨氮、总磷、	
★ 2#	理后废水取样池排	処理效率 へ	LAS、动植物油、石油类、锌	
★ 3#	磷化废水处理站 设 理前取 栈 口	考核污水	pH 值、化学需氧量、五日生化 需氧量、悬浮物、氨氮、石油	每天监测 4 次
★ 4#	隣化废水处理站处 理后 水 取样池排	处理效率	类、锌、总磷、阴离子表面活 性剂	连续监测2天
K. K.	厂区总排口	考核污水 是否达标	pH 值、化学需氧量、五日生化 需氧量、悬浮物、氨氮、石油 类、动植物油、锌、总磷、阴 离子表面活性剂	

6.2 废气监测内容

本项目废气,要为新建污水处理站运营期间产生的无组织恶臭,监测内容见表 6-2,监测点位置见图 6-2。

表 6-2 无组织废气监测内容

40.	,	70- 70-20-71/20	· 4mm (//1/14 17	
测导	监测点位置	监测目的	监测内容	监测频次
G 1#	上风向参照点	监测废气背景值	硫化氢、氨气、臭气 浓度	每天监测 4 次 连续监测 2 天
G2#	下风向监控点	考核废气排放达标 情况	硫化氢、氨气、臭气 浓度	每天监测 4 次 连续监测 2 天
G3#	下风向监控点	考核废气排放达标 情况	硫化氢、氨气、臭气 浓度	每天监测 4 次 连续监测 2 天
G4#	下风向监控点	考核废气排放达标 情况	硫化氢、氨气、臭气 浓度	每天监测 4 次 连续监测 2 天

监测期间同时测定风向、风速、气温、气压等气象参数 备注

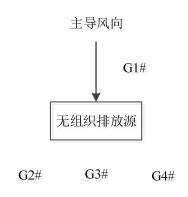


图 6-2 无组织废气监测点位示意图

6.3 厂界噪声监测

监测点位:在项目东、南、西、北方向厂界各布设1个监测点,共设4点。

表 6-3 噪声监测频次

监测点	监测点位	监测目的	监测项域	监测频次
N1	厂界东外 1m 处		-及 指 数,	
N2	厂界南外 1m 处	 噪声对周围	界环境噪	监测 2 天,分昼间和夜间进
N3	厂界西外 1m 处	环境的影响	声	行监测,昼夜各两次
N4	厂界北外 1m 处	10 m		

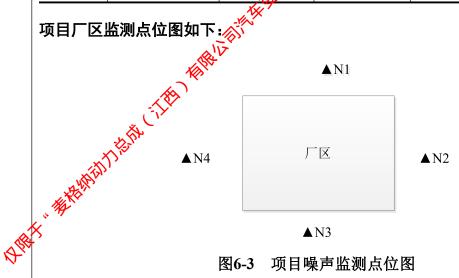


图6-3 项目噪声监测点位图

表七

验收监测期间生产工况记录:

表 7-1 验收工况检查情况一览表

日期	产品名称	设计日处理量 (t/d)	实际日处理量 (t/d)	生产负荷(%)
2021年02月 24日	二期污水处理站 处理能力	280	213	76.07
2021年02月 25日		280	215	76.79

具体证明见附件。

验收监测结果

1、废水

(1) 二期污水处理站监测结果:

表 7-2 二期污水处理站监测结果一览表 如位: mg/L (pH 除外)

采样	采样	检测项目		监测	為果		平均值或
点位	日期	松火火日	第一次	第二次	第三次	第四次	范围
		pH 值	7.28	1 7.33	7.29	7.27	7.27~7.33
化学需氧量 373 368 五日生化需 10 101	366	374	370				
		五日生化需 氧量	XX	101	115	111	109
		夏氮	63.2	62.9	63.0	63.5	63.2
★1# 二期	02月	悬浮物	28	26	27	25	27
一州 污水	24 日	总磷	6.55	6.60	6.53	6.58	6.57
处理 站综	~17tb	LAS	0.32	0.34	0.35	0.31	0.33
白調	Agy.	石油类	5.17	5.18	5.19	5.12	5.17
取样		动植物油	4.34	4.28	4.23	4.07	4.23
		锌	0.10	0.10	0.08	0.07	0.09
		pH 值	7.33	7.30	7.29	7.32	7.29~7.33
	02 月	化学需氧量	368	371	364	378	370
	25 日	五日生化需 氧量	116	113	115	109	113
		氨氮	63.0	62.6	62.8	63.2	62.9

		悬浮物	27	26	28	25	27
		总磷	6.56	6.62	6.53	6.57	6.57
		LAS	0.30	0.33	0.34	0.31	0.32
		石油类	5.14	5.18	5.40	5.27	5.25
		动植物油	4.18	3.95	4.17	4.07	4.09
		锌	0.09	0.09	0.10	0.08	0.09
		pH 值	6.61	6.58	6.62	6.64	6.58~6.6
		化学需氧量	58	56	58	59	
		五日生化需 氧量	15.2	18.8	16.9	15.4	16.6
		氨氮	6.55	6.49	6.43	6 552	6.50
	02月	悬浮物	13	12	14	11	13
	24 日	总磷	3.49	3.48	3,48	3.44	3.47
A Q U		LAS	$0.05_{\rm L}$	$0.05_{\rm L}$	0.05 _L	$0.05_{\rm L}$	$0.05_{\rm L}$
★2# 二期		石油类	0.54	0.47	0.52	0.48	0.50
污水		动植物油	0.09		0.15	0.19	0.16
处理 站处		锌	0.05 _L	$0.05_{\rm L}$	$0.05_{ m L}$	$0.05_{ m L}$	$0.05_{\rm L}$
理后		pH 值	6.627	6.65	6.59	6.63	6.59~6.65
废水 取样		化学需氧量	58	57	57	56	57
池排口		五日生化学	15.5	16.9	18.7	20.0	17.8
		一 复氮	6.55	6.43	6.37	6.46	6.45
	02 景。	是 浮物	14	13	12	15	14
ny.	為對注	总磷	3.46	3.48	3.46	3.44	3.46
海岸		LAS	$0.05_{ m L}$	$0.05_{ m L}$	$0.05_{ m L}$	$0.05_{ m L}$	0.05_{L}
•		石油类	0.49	0.48	0.52	0.49	0.50
		动植物油	0.20	0.22	0.20	0.20	0.21
		锌	0.05_{L}	$0.05_{ m L}$	$0.05_{ m L}$	$0.05_{ m L}$	$0.05_{ m L}$

由表 7-2 可知, ★2#二期污水处理站处理后废水取样池排口 pH 值、化学需氧量、五日生化需氧量、氨氮、悬浮物、总磷、LAS 监测结果均符合白水湖污水处理厂接管标准,石油类、动植物油、锌监测结果均符合《污水综合排放标准》

(GB8978-1996) 表 4 一级标准。

(2) 磷化废水处理站监测结果:

表 7-3 磷化废水处理站监测结果一览表 单位: mg/L (pH 除外)

	12 /-3)	/	7末 児衣	十四.	mg/L (рп	PAN Z I J
采样	采样	 检测项目		监测	结果		平均值或
点位	日期	一位例次日	第一次	第二次	第三次	第四次	范围
		pH 值	5.94	5.99	5.92	5.93	5.92~5.99
		化学需氧量	81	80	82	80	81
		五日生化需 氧量	24.2	20.8	24.8	18.2	A STATE OF THE STA
	02月	氨氮	6.34	6.26	6.20	6.28	6.27
	24 日	悬浮物	85	84	86	83	85
		总磷	222	221	220	222	221
★ 3#		LAS	0.60	0.64	0.70	0.68	0.66
磷化		石油类	0.60	0.64	70	0.68	0.66
废水 处理		锌	0.06	0.06	0.06	0.06	0.06
站处		pH 值	5.91	TE THE STATE OF TH	5.88	5.92	5.88~5.93
理前 取样		化学需氧量	80	# 117 82	82	80	81
		五日生化需 氧量	26.47	24.5	22.0	19.2	23.0
	02月	氨氮	6.14	6.20	6.16	6.26	6.19
	25 日	悬浮物	84	83	82	85	84
		游	220	223	220	221	221
	-25:	LAS	0.59	0.57	0.61	0.58	0.59
	ANTIFE	石油类	0.70	0.76	0.74	0.74	0.74
WXXX	100	锌	0.06	0.06	0.06	0.06	0.06
★ 4#		pH 值	7.68	7.61	7.63	7.67	7.61~7.68
磷化 废水		化学需氧量	31	32	30	32	31
处理 站处	02月	五日生化需 氧量	10.2	8.2	11.6	10.3	10.1
理后	24 日	氨氮	0.258	0.255	0.249	0.252	0.254
废水 取样		悬浮物	12	10	11	12	11
池排		总磷	0.14	0.14	0.14	0.13	0.14

	LAS	0.14	0.12	0.11	0.12	0.12
	石油类	0.28	0.30	0.25	0.29	0.28
	锌	$0.05_{ m L}$	$0.05_{\rm L}$	0.05_{L}	$0.05_{ m L}$	$0.05_{\rm L}$
	pH 值	7.63	7.66	7.62	7.68	7.62~7.68
	化学需氧量	31	31	32	32	32
	五日生化需 氧量	11.0	9.1	13.0	10.4	10.9
02 月	氨氮	0.261	0.255	0.249	0.252	0.254
25 日	悬浮物	13	12	11	14	13
	总磷	0.14	0.14	0.14	0.14 🞺	0.14
	LAS	0.30	0.12	0.12	A	0.16
	石油类	0.33	0.30	0.30	0.32	0.31
	锌	$0.05_{\rm L}$	$0.05_{\rm L}$	0.0	$0.05_{\rm L}$	$0.05_{ m L}$

由表 7-3 可知,★4#磷化废水处理站处理后废水取样池排口 pH 值、化学需氧量、五日生化需氧量、氨氮、悬浮物、总体、LAS 监测结果均符合白水湖污水处理厂接管标准,石油类、锌监测结果均符合《污水综合排放标准》(GB8978-1996)表 4 一级标准。

(3) 厂区总排口监测炉果:

表 7-4 厂区总排 体监测结果一览表 单位: mg/L (pH 除外)

	采样	采样	检测项	V	平均值或			
	点位	日期	位例项目	第一次	第二次	第三次	第四次	范围
			pH 值	6.85	6.83	6.88	6.91	6.83~6.91
		解制力認	化学需氧量	53	52	55	54	54
	MAN NEWS	My,	五日生化需 氧量	14.3	12.8	11.4	16.2	13.7
Ź	★5# 厂区	02月24日	氨氮	5.43	5.40	5.46	5.37	5.42
•	总排		悬浮物	9	10	11	12	11
	П		总磷	3.28	3.26	3.24	3.29	3.27
			LAS	$0.05_{\rm L}$	$0.05_{\rm L}$	$0.05_{\rm L}$	$0.05_{\rm L}$	$0.05_{ m L}$
			石油类	0.30	0.29	0.26	0.28	0.28
			动植物油	0.16	0.15	0.18	0.15	0.16

	锌	$0.05_{\rm L}$	$0.05_{\rm L}$	$0.05_{\rm L}$	$0.05_{\rm L}$	$0.05_{\rm L}$
	pH 值	6.87	6.84	6.82	6.86	6.82~6.87
	化学需氧量	54	55	55	56	55
	五日生化需 氧量	16.8	17.2	14.0	19.7	16.9
	氨氮	5.46	5.34	5.49	5.37	5.42
02月	悬浮物	12	11	13	10	12
25 日	总磷	3.28	3.26	3.24	3.28	3.227
	LAS	$0.05_{ m L}$	$0.05_{\rm L}$	$0.05_{\rm L}$	$0.05_{ m L}$	0.05 _L
	石油类	0.30	0.32	0.31	0.31 🞺	0.31
	动植物油	0.13	0.13	0.15	A	0.14
	锌	$0.05_{\rm L}$	0.05_{L}	0.05 _L	$0.05_{\rm L}$	0.05_{L}

由表 7-4 可知,★5#厂区总排口 pH 值、化学需要。 五日生化需氧量、氨氮、悬浮物、总磷、LAS 监测结果均符合白水湖,水处理厂接管标准,石油类、动植物油、锌监测结果均符合《污水综合排放标准》(GB8978-1996)表 4 一级标准。

3、废气

无组织废气监测结果见下表现

表 7-6 无组织废气监测结果一览表

	采样		监测		检测结果 mg/m³	
	日期	监测点位	频次	硫化氢	氨	臭气浓度(无 量纲)
		不能就	第1次	< 0.005	0.06	13
			第2次	< 0.005	0.06	12
	02月	1#上风问参照点	第 3 次	< 0.005	0.05	12
	A A A		第 4 次	< 0.005	0.07	12
			第1次	< 0.005	0.05	13
	02 月 24 日	G2#下风向监控点	第2次	< 0.005	0.07	12
	21 🖂	G2#下风问益狂点	第 3 次	< 0.005	0.08	13
			第 4 次	< 0.005	0.07	14
			第1次	< 0.005	0.09	14
		G3#厂区下风向	第2次	< 0.005	0.10	12
			第 3 次	< 0.005	0.08	12

第4次 <0.005 0.10 12 第1次 <0.005 0.09 11 第2次 <0.005 0.09 11 第3次 <0.005 0.09 12 第4次 <0.005 0.09 12 第4次 <0.005 0.08 12 第1次 <0.005 0.08 14 第1次 <0.005 0.08 14 第1次 <0.005 0.06 12 第4次 <0.005 0.09 13 第3次 <0.005 0.10 14 G2#下风向监控点 第2次 <0.005 0.09 13 第3次 <0.005 0.10 12 第4次 <0.005 0.11 12 第4次 <0.005 0.11 12 第4次 <0.005 0.11 13 第3次 <0.005 0.11 12 第4次 0.005 0.11 12 第4次 0.005 0.11 12 第4次 0.005 0.11 12 第4次 0.005 0.11 12						
第 2 次			第 4 次	< 0.005	0.10	12
第3次 <0.005 0.09 12 第4次 <0.005 0.08 12 第4次 <0.005 0.08 12 第1次 <0.005 0.08 14 14 14 14 15 15 15 15 15 15			第1次	< 0.005	0.09	11
第 3 次			第 2 次	< 0.005	0.11	11
第1次 <0.005 0.08 14 第2次 <0.005 0.07 12 第3次 <0.005 0.06 12 第4次 <0.005 0.09 13 第1次 <0.005 0.09 13 第3次 <0.005 0.10 14 第3次 <0.005 0.10 12 第4次 <0.005 0.11 12 第4次 <0.005 0.11 12 第4次 <0.005 0.11 13 第3次 <0.005 0.11 13 第4次 0.005 0.09 13 第1次 <0.005 0.11 12 第4次 0.005 0.11 12 第4次 0.005 0.11 12		(G4#) 区下X(円)	第 3 次	< 0.005	0.09	12
第 2 次			第 4 次	< 0.005	0.08	12
第 3 次			第1次	< 0.005	0.08	14
第 4 次		G1#上风向参照点	第2次	< 0.005	0.07	12
第1次 <0.005 0.10 14 14 13 第2次 <0.005 0.09 13 第3次 <0.005 0.11 12 第4次 <0.005 0.10 12 第1次 <0.005 0.11 13 13 第3次 <0.005 0.11 13 13 第3次 <0.005 0.11 13 13 第4次 ○0.005 0.11 13 第4次 ○0.005 0.11 12 第4次 第4次 ○0.005 0.11 12 第4次 ○0.005 0.11 12 第2次 <0.005 0.11 12 第2次 <0.005 0.11 12 12 第2次 <0.005 0.11 12 12 第2次 <0.005 0.11 12 12 第2次 ○0.005 0.11 12 13 第2次 <0.005 0.11 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12			第3次	< 0.005	0.06	12 A THIS
G2#下风向监控点 第 2 次 <0.005			第 4 次	< 0.005	0.09	13
第 3 次			第1次	< 0.005	0.10	14
02月 第 4 次 <0.005		G2#下风向监控点	第2次	< 0.005	0.09	13
第1次 <0.005			第3次	< 0.005	0.11	12
G3#厂区下风向 第 2 次 <0.005	02 月		第 4 次	< 0.005	6 599	12
第 3 次 <0.005	25 日		第1次	< 0.005	0.10	12
第 4 次 第 0.005 第 1 次 <0.005		G3#厂区下风向	第2次	<0.005	0.11	13
第1次 <0.005			第3次	< 0.00	0.12	12
第 2 次			第 4 次	0.005	0.09	13
G4#厂区下风向 第次 <0.005 0.13 12			第1次	< 0.005	0.11	12
第次 <0.005 0.13 12			第 2 次	< 0.005	0.11	13
第 4 次 <0.005 0.10 13			第7次	< 0.005	0.13	12
		اه	第 4 次	< 0.005	0.10	13

由表 7-5 可知,项部厂界无组织废气氨、硫化氢、臭气浓度排放浓度均符合《恶臭污染物排放标准》(GB14554-93)相关限值要求。

3、厂界噪声

噪声监测结果详见表 7-6。

表 7-6 厂界噪声监测结果表 单位: Leq (dB (A))

×		ILE VIII		监测结果					
	监测时间	监测 点位		昼间		夜间			
		/W	监测值	执行标准	达标情况	监测值	执行标准	达标情况	
		N1	57.1	65	达标	45.9	55	达标	
	02月24	N2	55.0	65	达标	46.3	55	达标	
	日	N3	55.1	65	达标	45.6	55	达标	
		N4	52.6	65	达标	43.0	55	达标	

	N1	56.9	65	达标	46.7	55	达标
02月25	N2	55.2	65	达标	46.1	55	达标
日	N3	56.9	65	达标	48.2	55	达标
	N4	56.1	65	达标	45.3	55	达标

从表 7-6 的噪声监测结果可知,本项目东、南、西、北厂界噪声昼、夜均满足《工业企业厂界环境排放噪声标准》(GB12348-2008)3 类标准。

4、固体废物

本项目营运期固体废物主要为新建二期非磷化废水处理站运行过程中**深**增生化污泥量和废油,暂存于危废暂存库,统一交由有资质单位处置。

5、污染物排放总量核算

本项目无新增废水产生,二期非磷化废水处理站建成后,从一区内仓库管理人员生活污水、技术大楼、食堂、员工倒班宿舍废水进行放集处理,全厂废水均可以得到完全处理。全厂废水分别经自建一期非磷化废水处理站、二期非磷化废水处理站和磷化废水处理站处理达接管标准后进入白水湖污水处理厂处理后排入赣江;全厂废水主要为生活污水和生产废水,年排放量为137940t/a,按照检测报告结果进行总量核算。

表7-7 总量控制企果一览表 单位: t/a

项目	环评考核总量	计算结果	评价
CODcr	17-72	7.59	合格
NH ₃ -N	1 12 · 12	0.748	合格

根据检测报告结果,总量考核量核算过程如下:

CODcr: $13.7940 \times 55 \times 10^{-6} = 7.59 \text{ t/a}$

NH₃-N₂ 37940×5.42×10⁻⁶=0.748t/a

表八

验收监测结论

一、"三同时"执行情况

根据《中华人民共和国环境影响评价法》和《建设项目环境保护管理条例》相关法规的规定,麦格纳动力总成(江西)有限公司(原名为"格特拉克(江西)传动系统有限公司")办理了该项目的环保审批手续,委托江西融大环境技术资调有限公司对该项目开展了环境影响评价工作。2020年05月,江西融大环境技术咨询有限公司完成了《格特拉克(江西)传动系统有限公司新型薄膜感应器及模组技术改造项目环境影响报告表》的编制工作。南昌经济技术开发区城市管理和环境保护局于2020年06月04日以洪经城环审字[2020]30。文对本项目环评进行了批复。

项目建设时按照国家建设项目"三同时"制度进行管理,落实了环境影响评价及环保主管部门的要求和规定,做到了环保证施与主体工程"同时设计、同时施工、同时投产使用"。

二、环保设施调试运行效果

1、废水

本项目无新增废水产生,为期非磷化废水处理站建成后,对厂区内仓库管理人员生活污水、技术大楼、食堂、员工倒班宿舍废水进行收集处理,全厂废水均可以得到完全处理。全厂废水分别经自建一期非磷化废水处理站、二期非磷化废水处理站和磷化废水处理站处理达接管标准后进入白水湖污水处理厂处理后排入赣江。

验证测期间,★2#二期污水处理站处理后废水取样池排口 pH 值、化学需氧量、五日生化需氧量、氨氮、悬浮物、总磷、LAS 监测结果均符合白水湖污水处理厂接管标准,石油类、动植物油、锌监测结果均符合《污水综合排放标准》(GB8978-1996)表 4 一级标准;★4#磷化废水处理站处理后废水取样池排口 pH 值、化学需氧量、五日生化需氧量、氨氮、悬浮物、总磷、LAS 监测结果均符合白水湖污水处理厂接管标准,石油类、锌监测结果均符合《污水综合排放标准》(GB8978-1996)表 4 一级标准;★5#厂区总排口 pH 值、化学需氧量、五日生化需氧量、氨氮、悬浮物、总磷、LAS 监测结果均符合白水湖污水处理厂接管

标准,石油类、动植物油、锌监测结果均符合《污水综合排放标准》(GB8978-1996) 表 4 一级标准。

3、废气

验收监测期间,项目厂界无组织废气氨、硫化氢、臭气浓度排放浓度均符合《恶臭污染物排放标准》(GB14554-93)限值要求。

4、噪声

验收监测期间,本项目东、南、西、北厂界噪声昼、夜均满足《工业企业》 界环境排放噪声标准》(GB12348-2008)3 类标准。

5、固体废物

本项目营运期固体废物主要为新建二期非磷化废水处理站运行过程中新增 生化污泥量和废油,暂存于危废暂存库,定期交由有资质单位处置。

5、总量控制

根据计算结果,全厂 CODcr、NH₃-N 总量考核分别为 7.59t/a, 0.748t/a, 符合环评总量考核要求。

三、工程建设对环境的影响

项目的开发建设带动周边配套产产并值,促进邻近片区的开发和发展,具有较大的经济和社会效益。项目建设发试运行期间,未发生扰民事件,未收到群众环保投诉。

四、要求与建议

为了确保本公司对周边环境不造成影响,需加强以下几方面工作:

- (1)企业运营过程中必须保证环保设施的正常运行,确保环评中提出的各项治理措施落实到位,加强环保管理,确保各项污染物稳定达标排放,防止超标现象设生。
 - (2) 公司应加强员工环保意识、安全意识的教育。
- (3)建立健全环境保护日程管理和责任制度,切实保证场区污染治理设施 正常运行。